
IEMS5730 / IERG4330
Spring 2024

Spark SQL
Prof. Wing C. Lau

Department of Information Engineering
wclau@ie.cuhk.edu.hk

Spark Part II 2

Acknowledgements
n These slides are adapted from the following sources:

n Matei Zaharia, “Spark 2.0,” Spark Summit East Keynote, Feb 2016.
n Reynold Xin, “The Future of Real-Time in Spark,” Spark Summit East Keynote, Feb 2016.
n Michael Armburst, “Structuring Spark: SQL, DataFrames, DataSets, and Streaming,” Spark Summit East Keynote, Feb

2016.
n Ankur Dave, “GraphFrames: Graph Queries in Spark SQL,” Spark Summit East, Feb 2016.
n Michael Armburst, “Spark DataFrames: Simple and Fast Analytics on Structured Data,” Spark Summit Amsterdam, Oct

2015.
n Michael Armburst et al, “Spark SQL: Relational Data Processing in Spark,” SIGMOD 2015.
n Michael Armburst, “Spark SQL Deep Dive,” Melbourne Spark Meetup, June 2015.
n Reynold Xin, “Spark,” Stanford CS347 Guest Lecture, May 2015.
n Joseph K. Bradley, “Apache Spark MLlib’s past trajectory and new directions,” Spark Summit Jun 2017.
n Joseph K. Bradley, “Distributed ML in Apache Spark,” NYC Spark MeetUp, June 2016.
n Ankur Dave, “GraphFrames: Graph Queries in Apache Spark SQL,” Spark Summit, June 2016.
n Joseph K. Bradley, “GraphFrames: DataFrame-based graphs for Apache Spark,” NYC Spark MeetUp, April 2016.
n Joseph K. Bradley, “Practical Machine Learning Pipelines with MLlib,” Spark Summit East, March 2015.
n Joseph K. Bradley, “Spark DataFrames and ML Pipelines,” MLconf Seattle, May 2015.
n Ameet Talwalkar, “MLlib: Spark’s Machine Learning Library,” AMPCamps 5, Nov. 2014.
n Shivaram Venkataraman, Zongheng Yang, “SparkR: Enabling Interactive Data Science at Scale,” AMPCamps 5, Nov.

2014.
n Tathagata Das, “Spark Streaming: Large-scale near-real-time stream processing,” O’Reilly Strata Conference, 2013.
n Joseph Gonzalez et al, “GraphX: Graph Analytics on Spark,” AMPCAMP 3, 2013.
n Jules Damji, “Jumpstart on Apache Spark 2.X with Databricks,” Spark Sat. Meetup Workshop, Jul 2017.
n Sameer Agarwal, “What’s new in Apache Spark 2.3,” Spark+AI Summit, June 2018.
n Reynold Xin, Spark+AI Summit Europe, 2018.
n Hyukjin Kwon of Hortonworks, “What’s New in Spark 2.3 and Spark 2.4,” Oct 2018.
n Matel Zaharia, “MLflow: Accelerating the End-to-End ML Lifecycle,” Nov. 2018.
n Jules Damji, “MLflow: Platform for Complete Machine Learning Lifecycle,” PyData, Jan 2019.

n All copyrights belong to the original authors of the materials.

Spark Part II 3

Major Modules in Spark

Spark Part II 4

Before SQL support was available
from Spark

n The Spark Core Engine does not understand the
structure of the data in RDDs or the semantics of
user functions à limited optimization.

n However, most data is structured, e.g. JSON, CSV,
Avro, Parquet, Hive, etc

=> Programming/ Operations via the RDD API inevitably
ends up with a lot of tuples (_1, _2, …)

n Functional Transformations, e.g. Map/Reduce are still
not as Intuitive as SQL for a lot of Experienced
System/Data Analysts.

Spark Part II 5

SQL support in Spark - Take 1:
The Shark Story

n Hive is great, but Hadoop’s execution engine
makes even the smallest queries take minutes

n Scala is good for programmers, but many data
users only know SQL

n Initial Approach: Make Hive to run on Spark

= Hive on Spark

Spark Part II 6

Original Hive Architecture

Meta
store

HDFS

Client

Driver

SQL
Parser

Query
Optimizer

Physical Plan

Execution

CLI JDBC

MapReduce

Spark Part II 7

Shark Architecture

Meta
store

HDFS

Client

Driver

SQL
Parser

Physical Plan

Execution

CLI JDBC

Spark

Cache
Mgr.

Query
Optimizer

[Engle et al, SIGMOD 2012]

Spark Part II 8

Efficient In-Memory Storage

n Simply caching Hive records as Java objects is
inefficient due to high per-object overhead

n Instead, Shark employs column-oriented storage
using arrays of primitive types

1

Column Storage
2 3

john mike sally

4.1 3.5 6.4

Row Storage
1 john 4.1

2 mike 3.5

3 sally 6.4

Spark Part II 9

Efficient In-Memory Storage

n Simply caching Hive records as Java objects is
inefficient due to high per-object overhead

n Instead, Shark employs column-oriented storage
using arrays of primitive types

1

Column Storage
2 3

john mike sally

4.1 3.5 6.4

Row Storage
1 john 4.1

2 mike 3.5

3 sally 6.4

Benefit: similarly compact size to serialized
data,

but >5x faster to access

Spark Part II 10

But Shark was short-lived (2011-2014)

Limitations of
nCan only be used to query external data in Hive catalog à
limited data sources
nCan only be invoked via SQL string from Spark

à error prone
nHive optimizer tailored for MapReduce

à difficult to extend

nAs a result, BDAS Project decided to switch to Spark SQL
and stopped development of Shark in 2014

n The Apache Hive community still runs a Hive-over-Spark
effort, as well as the Stinger/ Stinger.Next efforts to make
Hive/HiveQL to be SQL compatible and low-latency

Spark Part II 11

Take 2: Spark SQL Overview
n Part of the core distribution since Spark 1.0 (April 2014)

n Optionally alongside or replacing existing Hive deployments
n Run SQL/ HiveQL queries including UDFs, UDAFs and

SerDes, e.g.

n Connect existing Business Intelligence (BI) tools to Spark
through JDBC

n Bindings in Python, Scala and Java

Spark Part II 12

The Approach of Spark SQL
n Introduce a Tightly Integrated way to work with a new abstraction

of Structured Data called SchemaRDD, which is a Distributed
Collection of Rows (i.e. a Table) with Named Columns
n SchemaRDD was renamed to DataFrame in Spark 1.3

n Support the Transformation of RDDs using SQL: In particular,
DataFrames (aka SchemaRDDs) is an abstraction which
supports:
n Selecting, Filtering, Aggregating and Plotting Structured data

(cf. R or Python-based Pandas)
n Evaluated lazily à unmaterialized logical plan

n Data source integration Support for: Hive, Parquet, JSON and …

Spark Part II 13

Relationship between Spark SQL and Shark
n Shark modified the Hive backend to run over Spark but had

two challenges:
n Limited integration with Spark programs
n Hive Optimizer not designed for Spark

n Spark SQL reuses some parts of Shark by
Borrowing:

n Hive Data Loading
n In-memory Column-store

while Adding:
n RDD-aware Optimizer
n Richer Language Interfaces

Spark Part II 14

What is an RDD ?

n Dependencies
n Partitions (with optional locality information)
n Compute Function: Partition=>Iterator[T]

Spark Part II 15

What is an RDD ?

n Dependencies
n Partitions (with optional locality information)
n Compute Function: Partition=>Iterator[T]

Spark Part II 16

Why Structure ?

n What do we mean by “Structure” [verb] ?:
n Construct or Arrange according to a plan ; Give a pattern

or organization to.
n By definition, structure will LIMIT what can be

expressed.
n In practice, it is still possible to accommodate a vast

majority of computations
BUT
n By Limiting the space of what can be expressed

ENABLES Optimization

Spark Part II 17

Adding Schema to RDDs

Spark + RDDs
n Functional transformations

on Partitioned Collections
of Opaque Objects

SQL + DataFrames (aka
SchemaRDDs)
n Declarative transformations

on Partitioned Collections
of Tuples

Spark Part II 18

Comparing the Approaches of
RDD vs. DataFrame

Spark Part II 19

Data Model for DataFrame

n Nested data model
n Supports both primitive SQL types

(boolean, integer, double, decimal, string,
data, timestamp) and complex types
(structs, arrays, maps, and unions); also
user defined types.

n First class support for complex data types

Spark Part II 20

DataFrame Operations

n Relational operations (select, where, join,
groupBy) via a DSL

n Operators take expression objects
n Operators build up an abstract syntax tree

(AST), which is then optimized by Catalyst.

n Alternatively, register as temp SQL table and
perform traditional SQL query strings

Spark Part II 21

Programming Interface for Spark SQL

Spark Part II 22

Spark SQL Components

Spark Part II 23

Getting Started: Spark SQL
n SQLContext/ HiveContext

n Entry point for all SQL functionality
n Wraps/Extend existing Spark Context

OR

Spark Part II 24

SparkContext subsumed by SparkSession
since Spark v2.0 !

n Starting v2.0, SparkSession becomes the unified entry point, i.e. a
Conduit, to Spark
n Create Datasets/ DataFrames
n Read/Write Data,
n Access services of all Spark modules like SparkSQL, Streaming, …
n Work with metadata
n Set/Get Spark Configuration ; Driver uses for Cluster Resource Management

Spark Part II 25

Sample Input Data

n A text file filled with people’s names and ages:

Spark Part II 26

RDDs as Relations (Scala)

Spark Part II 27

RDDs as Relations (Python)

Spark Part II 28

RDDs as Relations (Java)

Spark Part II 29

Querying using Spark SQL (Python)

Spark Part II 30

Support of Existing Tools, and New Data Sources

n SparkSQL includes a server that exposes its
data using JDBC/ODBC
n Query data from HDFS/S3
n Including formats like Hive/Parquet/JSON
n Support for caching data IN-MEMORY

Spark Part II 31

Caching Tables In-Memory

n SparkSQL can cache tables using an in-memory
columnar format:
n Scan only required columns
n Fewer allocated objects (less Garbage Collection)
n Automatically selects best compression
e.g.

cacheTable(“people”) or dataframe.cache()

Spark Part II 32

Caching Comparison

Spark Part II 33

Language Integrated UDFs

Spark Part II 34

Reading Data stored in Hive

Spark Part II 35

Parquet Compatibility

n Native support for reading data in Parquet
n Columnar storage avoids reading unneeded data
n RDDs can be written to Parquet files, preserving the

schema
n Convert other slower formats into Parquet for

repeated querying

Spark Part II 36

Using Parquet

Spark Part II 37

JSON Support

n Use jsonFile or jsonRDD to convert a collection
of JSON objects into a DataFrame

n Infer and Union the schema of each record
n Maintain nested structures and arrays

Spark Part II 38

JSON Example

Spark Part II 39

Data Sources API

n Allow easy integration with new sources of
structured data:

Spark Part II 40

Much More than SQL: DataFrames as
A Unified Interface for the Processing of

Structured Data

DataFrames
(aka SchemaRDDs)

Spark Part II 41

Much More than SQL:
Simplifying Inputs and Outptuts

Spark Part II 42

Unified and Simplified Interface to
Read/ Write Data in Many different Formats

Spark Part II 43

Unified and Simplified Interface to
Read/ Write Data in Many different Formats

Spark Part II 44

Unified and Simplified Interface to
Read/ Write Data in Many different Formats

Spark Part II 45

ETL using Custom Data Sources

Spark Part II 46

Write Less Codes with DataFrames
n Common operations can be expressed concisely as higher

level operation calls to the DataFrame API:
n Selecting required Columns
n Joining Different Data Sources
n Aggregation (Count, Sum, Average, etc)
n Filtering

Spark Part II 47

Write Less Codes:
An Example of Computing Average

private IntWritable one =
new IntWritable(1)

private IntWritable output =
new IntWritable()

proctected void map(
LongWritable key,
Text value,
Context context) {

String[] fields = value.split("\t")
output.set(Integer.parseInt(fields[1]))
context.write(one, output)

}

IntWritable one = new IntWritable(1)
DoubleWritable average = new DoubleWritable()

protected void reduce(
IntWritable key,
Iterable<IntWritable> values,
Context context) {

int sum = 0
int count = 0
for(IntWritable value : values) {

sum += value.get()
count++
}

average.set(sum / (double) count)
context.Write(key, average)

}

data = sc.textFile(...).split("\t")
data.map(lambda x: (x[0], [x.[1], 1])) \

.reduceByKey(lambda x, y: [x[0] + y[0], x[1] +
y[1]]) \

.map(lambda x: [x[0], x[1][0] / x[1][1]]) \

.collect()

Spark Part II 48

Write Less Code:
Example of Computing Average

n Using RDDs
n data = sc.textFile(...).split("\t")
n data.map(lambda x: (x[0], [int(x[1]), 1])) \
n .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]) \
n .map(lambda x: [x[0], x[1][0] / x[1][1]]) \
n .collect()

Using DataFrames
sqlCtx.table("people") \

.groupBy("name") \

.agg("name", avg("age")) \

.collect()

Using SQL
SELECT name, avg(age)
FROM people
GROUP BY name

Using Pig
P = load '/people' as (name, name);
G = group P by name;
R = foreach G generate … AVG(G.age);

Spark Part II 49

Read Less Data with DataFrames & SparkSQL
“The fastest way to process big data is to never read it.”

nSparkSQL can help the program to read less data
automatically by performing BEYOND naïve scanning:

n Using Columnar formats (e.g. Parquet) and prune irrelevant
Columns and Blocks of data

n Push filters to the source
n Converting to more efficient formats, e.g. turning string

comparisons into integer comparisons for dictionary encoded
data

n Using Partitioning (i.e., /year=2-14/month=02/..)
n Skipping data using statistics (i.e. min, max)
n Pushing predicates into storage systems (i.e. JDBC)

Spark Part II 50

Intermix DataFrame Operations with
Custom Codes (Python, Java, R, Scala)

Takes and
returns a

DataFrame

Spark Part II 51

Integration with RDDs
n Internally, DataFrame execution is done with Spark RDDs
=> Easy Interoperation with outside sources and custom

algorithms

External Input
def buildScan(

requiredColumns: Array[String],
filters: Array[Filter]): RDD[Row]

Custom Processing
queryResult.rdd.mapPartitions { iter =>

… Your code here …

}

Spark Part II 52

DataFrame & SparkSQL Demo
Demo:
nUsing Spark SQL to read, write, and transform data in a variety
of formats:

http://people.apache.org/~marmbrus/talks/dataframe.demo.pdf

Spark Part II 53

Plan Optimization and Execution for the entire
Pipelines

n Optimization happens as late as possible
=> Spark SQL can optimize even across different functions !

Spark Part II 54

Optimization Example

Spark Part II 55

Optimization Example

Spark Part II 56

Optimization Example

Only join
relevant users

Spark Part II 57

Optimization Example

Spark Part II 58

Named Columns (vs. Opaque Objects in RDDs)
Enable Performance Optimization

Spark Part II 59

More Performance Comparison

Spark Part II 60

Datasets: Another Structured Data Abstraction
and its API in Spark

More info at:
https://techvidvan.com/tutorials/apache-spark-dataframe-vs-datasets/

Spark Part II 61

Datasets vs. DataFrames
n DataFrames are collections of rows with a schema
n Datasets add static types, e.g. Dataset[Person]
n Spark 2.0 has merged these APIs:

Dataframe = Dataset[Row]
Benefits of Merging
n Simpler to understand

n Only kept Dataset separate to keep binary
compatibility in Spark 1.x

n Libraries can take data of both forms
n With Streaming, same API will also work on streams

Spark Part II 62

Datasets vs. DataFrames
Source: Chapter 4, p.g. 50 of “Spark - The Definitie Guide” by Bill
Chambers & Matei Zaharia

“In essence, within the Structured APIs, there are two more APIs, the “untyped”
DataFrames and the “typed” Datasets. To say that DataFrames are untyped is
aslightly inaccurate; they have types, but Spark maintains them completely and only
checks whether those types line up to those specified in the schema at runtime.
Datasets, on the other hand, check whether types conform to the specification at
compile time.

Datasets are only available to Java Virtual Machine (JVM)–based languages (Scala
and Java) and we specify types with case classes or Java beans. For the most part,
you’re likely to work with DataFrames. To Spark (in Scala), Data‐
Frames are simply Datasets of Type Row. The “Row” type is Spark’s internal
representation of its optimized in-memory format for computation. This format
makes for highly specialized and efficient computation because rather than using
JVM types, which can cause high garbage-collection and object instantiation costs,
Spark can operate on its own internal format without incurring any of those costs.
To Spark (in Python or R), there is no such thing as a Dataset: everything is a
DataFrame and therefore we always operate on that optimized format.”

Spark Part II 63

Example for Datasets and DataFrames

Spark Part II 64

Datasets API
n Type-safe: Operate on domain objects with compiled lambda

functions

Spark Part II 65

Long-Term Direction

n RDD will remain the low-level API in Spark
n Datasets and DataFrames give richer semantics and

optimizations
n New libraries will increasingly use these as interchange format,

e.g. Structured Streaming, MLlib and GraphFrames

Spark Part II 66

Shared Optimization and Execution

Spark Part II 67

Towards to the Support of SQL 2003

n Since 2017, Spark can run all 99 TPC-DS queries
n Have a standard compliant parser
n Subqueries (correlated & uncorrelated)
n Approximate Aggregate Stats

n https://databricks.com/blog/2016/06/17/sql-subqueries-in-apache-spark-2-0.html

Spark Part II 68

Lessons Learnt from Spark SQL
n SQL is wildly popular and important for real-world

customers
n Schema is very useful

n In most data pipelines, even the ones that start with
unstructured data end up having some implicit structure

n Key-value abstraction (under RDD) is too limited
n Nevertheless, Support for Semi/Un-structured data is critical !

n Separation of Logical vs. Physical Plan is important for
Performance Optimizations, e.g. join selection.

