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Major Modules in Spark
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Before SQL support was available 
from Spark

n The Spark Core Engine does not understand the 
structure of the data in RDDs or the semantics of 
user functions à limited optimization.

n However, most data is structured, e.g. JSON, CSV, 
Avro, Parquet, Hive, etc

=> Programming/ Operations via the RDD API inevitably 
ends up with a lot of tuples ( _1, _2, …)

n Functional Transformations, e.g. Map/Reduce are still 
not as Intuitive as SQL for a lot of Experienced 
System/Data Analysts.
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SQL support in Spark - Take 1: 
The Shark Story

n Hive is great, but Hadoop’s execution engine 
makes even the smallest queries take minutes

n Scala is good for programmers, but many data 
users only know SQL

n Initial Approach: Make Hive to run on Spark

= Hive on Spark
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Original Hive Architecture
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Shark Architecture
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Efficient In-Memory Storage

n Simply caching Hive records as Java objects is 
inefficient due to high per-object overhead

n Instead, Shark employs column-oriented storage 
using arrays of primitive types

1
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2 mike 3.5

3 sally 6.4
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Benefit: similarly compact size to serialized 
data,

but >5x faster to access
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But Shark was short-lived (2011-2014) 

Limitations of 
nCan only be used to query external data in Hive catalog à
limited data sources
nCan only be invoked via SQL string from Spark

à error prone
nHive optimizer tailored for MapReduce 

à difficult to extend

nAs a result, BDAS Project decided to switch to Spark SQL 
and stopped development of Shark in 2014

n The Apache Hive community still runs a Hive-over-Spark 
effort, as well as the Stinger/ Stinger.Next efforts to make 
Hive/HiveQL to be SQL compatible and low-latency
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Take 2: Spark SQL Overview
n Part of the core distribution since Spark 1.0 (April 2014)

n Optionally alongside or replacing existing Hive deployments
n Run SQL/ HiveQL queries including UDFs, UDAFs and 

SerDes, e.g.

n Connect existing Business Intelligence (BI) tools to Spark 
through JDBC

n Bindings in Python, Scala and Java
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The Approach of Spark SQL
n Introduce a Tightly Integrated way to work with a new abstraction 

of  Structured Data called SchemaRDD, which is a Distributed 
Collection of Rows (i.e. a Table) with Named Columns
n SchemaRDD was renamed to DataFrame in Spark 1.3

n Support the Transformation of RDDs using SQL: In particular, 
DataFrames (aka SchemaRDDs) is an abstraction which 
supports:
n Selecting, Filtering, Aggregating and Plotting Structured data        

(cf. R or Python-based Pandas)
n Evaluated lazily à unmaterialized logical plan

n Data source integration Support for: Hive, Parquet, JSON and …
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Relationship between Spark SQL and Shark
n Shark modified the Hive backend to run over Spark but had 

two challenges:
n Limited integration with Spark programs
n Hive Optimizer not designed for Spark

n Spark SQL reuses some parts of Shark by
Borrowing:

n Hive Data Loading
n In-memory Column-store

while Adding:
n RDD-aware Optimizer
n Richer Language Interfaces



Spark Part II 14

What is an RDD ?

n Dependencies
n Partitions (with optional locality information)
n Compute Function: Partition=>Iterator[T]
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Why Structure ?

n What do we mean by “Structure” [verb] ?:
n Construct or Arrange according to a plan ; Give a pattern 

or organization to.
n By definition, structure will LIMIT what can be 

expressed.
n In practice, it is still possible to accommodate a vast 

majority of computations
BUT
n By Limiting the space of what can be expressed 

ENABLES Optimization
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Adding Schema to RDDs

Spark + RDDs
n Functional transformations 

on Partitioned Collections 
of Opaque Objects

SQL + DataFrames (aka 
SchemaRDDs)
n Declarative transformations 

on Partitioned Collections 
of Tuples
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Comparing the Approaches of
RDD vs. DataFrame
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Data Model for DataFrame

n Nested data model
n Supports both primitive SQL types 

(boolean, integer, double, decimal, string, 
data, timestamp) and complex types 
(structs, arrays, maps, and unions); also
user defined types.

n First class support for complex data types



Spark Part II 20

DataFrame Operations

n Relational operations (select, where, join, 
groupBy) via a DSL

n Operators take expression objects
n Operators build up an abstract syntax tree 

(AST), which is then optimized by Catalyst.

n Alternatively, register as temp SQL table and 
perform traditional SQL query strings
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Programming Interface for Spark SQL
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Spark SQL Components
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Getting Started: Spark SQL
n SQLContext/ HiveContext

n Entry point for all SQL functionality
n Wraps/Extend existing Spark Context

OR
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SparkContext subsumed by SparkSession
since Spark v2.0 !

n Starting v2.0, SparkSession becomes the unified entry point, i.e. a 
Conduit, to Spark
n Create Datasets/ DataFrames
n Read/Write Data,
n Access services of all Spark modules like SparkSQL, Streaming, …
n Work with metadata
n Set/Get Spark Configuration ; Driver uses for Cluster Resource Management
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Sample Input Data

n A text file filled with people’s names and ages:
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RDDs as Relations (Scala)
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RDDs as Relations (Python)
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RDDs as Relations (Java)
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Querying using Spark SQL (Python)
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Support of Existing Tools, and New Data Sources

n SparkSQL includes a server that exposes its 
data using JDBC/ODBC
n Query data from HDFS/S3
n Including formats like Hive/Parquet/JSON
n Support for caching data IN-MEMORY
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Caching Tables In-Memory

n SparkSQL can cache tables using an in-memory 
columnar format:
n Scan only required columns
n Fewer allocated objects (less Garbage Collection)
n Automatically selects best compression
e.g.

cacheTable(“people”)  or dataframe.cache( )
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Caching Comparison
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Language Integrated UDFs
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Reading Data stored in Hive
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Parquet Compatibility

n Native support for reading data in Parquet
n Columnar storage avoids reading unneeded data
n RDDs can be written to Parquet files, preserving the 

schema
n Convert other slower formats into Parquet for 

repeated querying
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Using Parquet
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JSON Support

n Use jsonFile or jsonRDD to convert a collection 
of JSON objects into a DataFrame

n Infer and Union the schema of each record
n Maintain nested structures and arrays
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JSON Example
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Data Sources API

n Allow easy integration with new sources of 
structured data:
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Much More than SQL:  DataFrames as  
A Unified Interface for the Processing of 

Structured Data

DataFrames
(aka SchemaRDDs)
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Much More than SQL:  
Simplifying Inputs and Outptuts
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Unified and Simplified Interface to 
Read/ Write Data in Many different Formats
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ETL using Custom Data Sources
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Write Less Codes with DataFrames
n Common operations can be expressed concisely as higher 

level operation calls to the DataFrame API:
n Selecting required Columns
n Joining Different Data Sources
n Aggregation (Count, Sum, Average, etc)
n Filtering
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Write Less Codes: 
An Example of Computing Average

private IntWritable one =
new IntWritable(1)

private IntWritable output =
new IntWritable()

proctected void map(
LongWritable key,
Text value,
Context context) {

String[] fields = value.split("\t")
output.set(Integer.parseInt(fields[1]))
context.write(one, output)

}

IntWritable one = new IntWritable(1)
DoubleWritable average = new DoubleWritable()

protected void reduce(
IntWritable key,
Iterable<IntWritable> values,
Context context) {

int sum = 0
int count = 0
for(IntWritable value : values) {

sum += value.get()
count++
}

average.set(sum / (double) count)
context.Write(key, average)

}

data = sc.textFile(...).split("\t")
data.map(lambda x: (x[0], [x.[1], 1])) \

.reduceByKey(lambda x, y: [x[0] + y[0], x[1] +
y[1]]) \

.map(lambda x: [x[0], x[1][0] / x[1][1]]) \

.collect()
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Write Less Code: 
Example of Computing Average

n Using RDDs
n data = sc.textFile(...).split("\t")
n data.map(lambda x: (x[0], [int(x[1]), 1])) \
n .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]) \
n .map(lambda x: [x[0], x[1][0] / x[1][1]]) \
n .collect()

Using DataFrames
sqlCtx.table("people") \

.groupBy("name") \

.agg("name", avg("age")) \

.collect() 

Using SQL
SELECT name, avg(age)
FROM people
GROUP BY name

Using Pig
P = load '/people' as (name, name);
G = group P by name;
R = foreach G generate … AVG(G.age);
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Read Less Data with DataFrames & SparkSQL
“The fastest way to process big data is to never read it.”

nSparkSQL can help the program to read less data 
automatically by performing BEYOND naïve scanning:

n Using Columnar formats (e.g. Parquet) and prune irrelevant 
Columns and Blocks of data

n Push filters to the source
n Converting to more efficient formats, e.g. turning string 

comparisons into integer comparisons for dictionary encoded 
data

n Using Partitioning (i.e., /year=2-14/month=02/.. )
n Skipping data using statistics (i.e. min, max)
n Pushing predicates into storage systems (i.e. JDBC) 
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Intermix DataFrame Operations with
Custom Codes (Python, Java, R, Scala)

Takes and 
returns a 

DataFrame
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Integration with RDDs
n Internally, DataFrame execution is done with Spark RDDs
=> Easy Interoperation with outside sources and custom 

algorithms

External Input
def buildScan(

requiredColumns: Array[String],
filters: Array[Filter]): RDD[Row]

Custom Processing
queryResult.rdd.mapPartitions { iter =>

… Your code here …

}
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DataFrame & SparkSQL Demo
Demo: 
nUsing Spark SQL to read, write, and transform data in a variety 
of formats:

http://people.apache.org/~marmbrus/talks/dataframe.demo.pdf
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Plan Optimization and Execution for the entire 
Pipelines

n Optimization happens as late as possible
=> Spark SQL can optimize even across different functions !
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Optimization Example
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Optimization Example
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Optimization Example

Only join
relevant users
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Optimization Example
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Named Columns (vs. Opaque Objects in RDDs) 
Enable Performance Optimization



Spark Part II 59

More Performance Comparison
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Datasets: Another Structured Data Abstraction 
and its API in Spark

More info at: 
https://techvidvan.com/tutorials/apache-spark-dataframe-vs-datasets/
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Datasets vs. DataFrames
n DataFrames are collections of rows with a schema
n Datasets add static types, e.g. Dataset[Person]
n Spark 2.0 has merged these APIs:

Dataframe = Dataset[Row]
Benefits of Merging
n Simpler to understand

n Only kept Dataset separate to keep binary 
compatibility in Spark 1.x

n Libraries can take data of both forms
n With Streaming, same API will also work on streams
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Datasets vs. DataFrames
Source:  Chapter 4, p.g. 50 of “Spark - The Definitie Guide” by Bill 
Chambers & Matei Zaharia

“In essence, within the Structured APIs, there are two more APIs, the “untyped”
DataFrames and the “typed” Datasets. To say that DataFrames are untyped is 
aslightly inaccurate; they have types, but Spark maintains them completely and only 
checks whether those types line up to those specified in the schema at runtime. 
Datasets, on the other hand, check whether types conform to the specification at 
compile time.

Datasets are only available to Java Virtual Machine (JVM)–based languages (Scala 
and Java) and we specify types with case classes or Java beans. For the most part, 
you’re likely to work with DataFrames. To Spark (in Scala), Data‐
Frames are simply Datasets of Type Row. The “Row” type is Spark’s internal 
representation of its optimized in-memory format for computation. This format 
makes for highly specialized and efficient computation because rather than using 
JVM types, which can cause high garbage-collection and object instantiation costs, 
Spark can operate on its own internal format without incurring any of those costs. 
To Spark (in Python or R), there is no such thing as a Dataset: everything is a 
DataFrame and therefore we always operate on that optimized format.”
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Example for Datasets and DataFrames
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Datasets API
n Type-safe:  Operate on domain objects with compiled lambda 

functions
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Long-Term Direction

n RDD will remain the low-level API in Spark
n Datasets and DataFrames give richer semantics and 

optimizations
n New libraries will increasingly use these as interchange format, 

e.g. Structured Streaming, MLlib and GraphFrames
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Shared Optimization and Execution
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Towards to the Support of SQL 2003

n Since 2017, Spark can run all 99 TPC-DS queries
n Have a standard compliant parser
n Subqueries (correlated & uncorrelated)
n Approximate Aggregate Stats

n https://databricks.com/blog/2016/06/17/sql-subqueries-in-apache-spark-2-0.html



Spark Part II 68

Lessons Learnt from Spark SQL
n SQL is wildly popular and important for real-world 

customers
n Schema is very useful

n In most data pipelines, even the ones that start with 
unstructured data end up having some implicit structure

n Key-value abstraction (under RDD) is too limited
n Nevertheless, Support for Semi/Un-structured data is critical !

n Separation of Logical vs. Physical Plan is important for 
Performance Optimizations, e.g. join selection.


